A GENERALIZATION OF PRIME HYPERIDEALS

author

  • M. Anbarloei Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin, Iran.
Abstract:

‎‎Let $R$ be a multiplicative hyperring‎. In this paper‎, ‎we introduce and study the concept of n-absorbing hyperideal which is a generalization‎ ‎of prime hyperideal‎. ‎A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of ‎$‎R‎$‎ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$‎, ‎then there are $n$ of the $alpha_i^,$s whose product is in $I$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

SPECTRUM OF PRIME FUZZY HYPERIDEALS

Let R be a commutative hyperring with identity. We introduceand study prime fuzzy hyperideals of R. We investigate the Zariski topologyon FHspec(R), the spectrum of prime fuzzy hyperideals of R.

full text

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

On Generalization of prime submodules

Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...

full text

A study on fuzzy (prime) hyperideals of Γ-hypersemirings

A Γ-semihyperring is a generalization of a semiring, a generalization of a semihyperring and a generalization of a Γ-semiring. In this paper, we define the notion of a fuzzy (prime) Γ-hyperideal of a Γ-semihyperring. Then we prove some results in this respect. Also, by using the notion of fuzzy Γ-hyperideals, we give several characterizations of Γ-semihyperrings. 2000 Mathematics Subject Classi...

full text

on generalization of prime submodules

let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n  2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x...

full text

Prime ( m , n ) Bi - Γ - Hyperideals in Γ - Semihypergroups

Relations between rough sets and algebraic structures have been already considered by many mathematicians. Motivated by studying the properties of rough (m,n) bi-Γ -hyperideals in Γ -semihypergroups, we now introduced the notion of prime (m,n) biΓ -hyperideals in Γ -semihypergroups and investigated several properties of these prime (m,n) bi-Γ -hyperideals. Also we applied the rough set theory t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  113- 127

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023